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Abstract—The synthesis of a novel sphingosine kinase inhibitor, (—)-F-12509A ((—)-1), was achieved in a highly efficient manner
that included nine longest linear steps and 45% overall yield from (—)-bicyclic B-ketoester (—)-2, and its absolute configuration

was determined to be (55,95,105).
© 2007 Elsevier Ltd. All rights reserved.

As a novel sphingosine kinase (SphK) inhibitor, (—)-F-
12509A ((—)-1), was isolated from a culture broth of a
discomycete, Trichopezizella barbata SANK 25395, by
Kohama and co-workers in 2000.!-2 F-12509A is the first
SphK inhibitor isolated from natural sources, and inhib-
its rat liver SphK in a dose-dependent manner with an
ICsq value of 18 uM and in a competitive manner with
respect to sphingosine (SPH).! This molecule showed
no inhibitory activity toward other enzymes such as
mammalian neutral sphingomyelinase, PI3-kinase, and
protein kinase C (PKC) at 100 uM. These results indi-
cated that F-12509A is a specific inhibitor of SphK,
which catalyzes the phosphorylation of SPH at its pri-
mary hydroxy group to biosynthesize sphingosinel-
phosphate (S1-P), and is known as a key enzyme that
regulates the cellular S1-P level. S1-P has been paid
much attention as a remarkable phospholipids based
on the discovery of its biological receptor® in addition
to its quite attractive biological activities such as cell
division, cell growth, and platelet activation.* (—)-F-
12509A ((—)-1) possesses a dihydroxybenzoquinone
moiety attached to a drimane sesquiterpene skeleton.
The unique dihydroxybenzoquinone moiety was found
in some biologically interesting natural products such
as maesaquinone.®> However, only a few methods for
preparation of this moiety have been reported in the lit-
erature.>® Our interest in the sphingolipid chemistry,
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involving the design and synthesis of substrate analogs’
and the synthesis of tool molecules useful for following
sphingolipid metabolism,® prompted us to synthesize
this novel and specific SphK inhibitor, (—)-F-12509A
((—)-1). We disclose herein the efficient synthesis of F-
12509A and its dihydroderivative, along with determi-
nation of the absolute configuration of naturally occur-
ring (—)-F-12509A ((—)-1) (see Fig. 1).

By searching the literature, we learned that hyatellaqui-
none is a mono-methyl ether of F-12509A and was syn-
thesized from (—)- and (+)-arbicanal (3).° We then
planned to follow the reported synthesis in order to con-
struct the basic skeleton of F-12509A. According to our
established procedure,'® we easily synthesized (—)- and
(+)-B-ketoester 2 by the resolution of enantiomers using
an acetal formation with a chiral auxiliary, 1,4-O-dibenz-
yl-L-threitol (Scheme 1).

The Wittig olefination of (—)-2 with triphenylphos-
phonium methylide followed by reduction and then

()-F-12509A (()-1)

Figure 1. Sphingosine kinase inhibitor (—)-F-12509A.
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Scheme 1. Reagents and conditions: (a) PhsP"CH;Br~, NaNH,, THF,
rt, 1 h; (b) LiAlH,, THF, rt, 20 h (99%, two steps); (¢) TPAP, NMO,
CH,Cl,, rt, 30 min (100%); (d) n-BuLi, TMEDA, THF, rt, 1 h then
(—)-3, rt, Smin (94%); (e) (i) NaHMDS, THF, —78 °C, 30 min; (ii)
CS,, —60°C, 1h; (iii) Mel, 0°C, 2 h; (f) n-BusSnH, AIBN, CgHg,
80 °C, 2 h (92%, two steps); (g) 2 N HCI aq, AcOH, MeOH, rt, 24 h
(100%); (h) salcomine (7), O,, DMF, rt, 20 h (89%); (i) 4 N KOH agq,
MeCN, reflux, 3 h (93%); (j) PtO,, H,, MeOH, rt, 8 h; (k) CAN, H,O,
MeCN, 0 °C, 20 min (100%, two steps); (1) 4 N KOH aq, MeCN,
reflux, 15 h (89%).

oxidation, quantitatively produced (—)-arbicanal (3).
Then, the aryllithium generated in situ by treatment of
the benzenetriol derivative 4, which was prepared from
commercially available 2,5-dimethoxybenzaldehyde
according to the reported procedure,!! with n-BuLi in
the presence of TMEDA was allowed to react with
(—)-3 to produce the corresponding alcohol (—)-5 in
good yield. The resulting hydroxyl group was removed
using the Barton method via the xanthate ester!? to pro-
vide (—)-6 in 92% yield over two steps. The MOM group
was removed by treatment with acid and the subsequent
oxidation of the obtained phenol was achieved using sal-
comine (N, N-bis(salicylidene)ethylenediimino cobalt(II)
(7) under an oxygen atmosphere'! to successfully obtain
para-quinone (—)-8'3 in 89% yield without the formation
of its ortho-isomer. Finally, the two methoxy groups of 8
were replaced by 1,4-addition of a hydroxyl anion to
dimethoxyquinone®® in acetonitrile to achieve the syn-
thesis of (—)-F-12509A ((—)-1). The spectral and physi-
cal data of the synthesized compound'*# were in good
agreement with those of the natural product including

the optical rotation, [a]; —95.2 (¢ 0.20, MeOH), (lit."
[oc]f)S —96 (¢ 0.25, MeOH)). Thus, the absolute configura-
tion of the natural (—)-F-12509A ((—)-1) was confirmed
as (55,95,108) by the present synthesis. Using the same
procedure, unnatural enantiomer (+)-1 ([oc}f; +92.8
(¢ 0.28, MeOH)) was also synthesized from bicyclic -
ketoester (+)-2. In addition, the dihydro analog (+)-9
of F-12509A was synthesized from (+)-8 by a sequence
of hydrogenation of its exo-olefin, oxidation to the qui-
none, and replacement to the hydroxyl groups.'?

Synthesized natural (—)-1 and unnatural congener (+)-1
showed almost the same inhibitory activity toward
SphK, and moreover, both (+)-1 and its dihydro analog
(£)-9 also showed inhibitory effects equal to natural (—)-
1 (ICsq values of four compounds were 17-19 uM). The
detailed results of these biological activities will be
reported elsewhere.

In summary, we achieved the total synthesis of the novel
sphingosine kinase inhibitor, (—)-F-12509A ((—)-1), in
an efficient manner (nine steps and 45% overall yield
from bicyclic B-ketoester (—)-2), and determination of
its absolute configuration as (55,95,10S). All the synthe-
sized compounds such as (+)- and each enantiomer of
F-12509A, and its dihydro analog (+)-9, showed an
effective biological activity toward SphK.
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